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INTRODUCTION 

The notion of self-organized critical systems has been introduced by Bak et al. (ref 1) to 
provide a consistent explanation for the fractal spatial structures, power law distributions, and 
flicker noise commonly observed in spatially extended-driven dynamical systems. They have 
proposed a deposition model with a geometric configuration that evolves toward a critical form. 
The critical state is an attractor for the dynamics of the system, and the model demonstrates how 
complex fractal surfaces evolve from simple system dynamics. 

APPROACH 

The cellular automata employed in this study are based on a two-dimensional regular 
lattice of cells using the rules given by Kadanoff et al. (ref 2). The basic variable is z(i,j), where 
(i,j) are the spatial indices and z represents the height of the lattice. The system is initialized to a 
planar surface, z(i,j) = 0. Particles are added at random locations z(i,j) such that z(i,j) —> z(i,j) + 
1 as long as the sites are stable. After a particle is added and after particle rearrangements, the 
stability of all lattice sites is determined by z(i,j) and the nearest neighbor z values. In the model 
treated here, a site becomes unstable when 

%{z(i,j)-z(i,j-k))H(z(i,j)-z(iJ-k)) + 

{z{i,j)-z{i-k,j))H{z{i,j)-z{i-k,j))}>Gc (1) 

where H is the Heaviside function and ac is the stability parameter. If site (i,j) becomes unstable, 
z(i,j) is reduced by Az(i,j), where Az(i,j) = 

% {H(z(i, j) - z(i, j - k)) + H(z(i, j) - z(i - k,j))} (2) 
k=-l 

The height of the corresponding nearest neighbor cells is incremented by 1 if their height 
is less than z(i,j). If all sites are stable, a new particle is added to the system. The boundaries are 
periodic and the local rule is applied recursively to the cells whose state is affected by the 
unstable site. The diffusion process continues until there are no more unstable sites, but no new 
particles are added until the lattice stabilizes. The number of sites that are changed as the lattice 
reorganizes after a particle is added is the size of an avalanche, and the total number of particles 
that have been added to the system is denoted n. 

The avalanches have been extensively explored (refs 1-4), and it has been demonstrated 
that avalanche sizes have the form of cutoff hyperbolic distributions. However, quantitative 
analysis of the geometric scaling properties of the evolving automata structures has been limited. 
One study by Meisel and Johnson (ref 5) has explored the structures in terms of self-similar 
fractals, and it has been shown that there is a monotonic increase in the Hausdorf-Besokovitch 
dimension D with increasing ac. 



However, the nature of the deposition process and the cellular automata models suggest 
that the resulting surface morphology belongs to a class of fractals called surface fractals (ref 6), 
which are usually measured in terms of self-affme fractal parameters (ref 7). Self-affine fractals' 
are statistically invariant under anisotropic dilations, whereas self-similar fractals are statistically 
invariant under isotropic dilations (ref 8). The simulations being investigated in this study 
pertain to surfaces in E? and are characterized by statistical invariance under transformations of 
the form 

{x,y,z} -> {hc,Xy,lHz} (3) 

where the Hurst exponent, H, describes the anisotropic scaling. In a more general case, the y 
coordinate would have a coefficient XK, and in the case of self-similar fractals, H would have a 
value of 1. The invariance expressed in equation (3) implies that any point on a self-affine 
surface can be represented in the form fr, h(r)J, where the height function h(r) is a single-valued 
function of r = fx,y} e Z. Equation (3) applies over a scaling range that is measured in terms of 
a parallel correlation length, &/. The parallel correlation length is the distance beyond which 
there is no correlation in heights between points on the surface. The roughness of the surface (a) 
is defined in terms of the perpendicular correlation length, ^, which is related to the rms 
variations in h(r). Assuming a homogenous, self-affine, surface structure, the height correlation 
function is given by (ref 7) 

Ch(r)=([Hr0+r)-h(r0)Y) (4) 

The Hurst exponent H is defined by the small r variations in Ch(r), i.e., 

H = V2 d(ln(Ch(r))/d(ln(r))(r < < $,) (5) 

where the range of r corresponding to the linear range in Ch(r) is referred to as the scaling range. 
Beyond the scaling range at large r, the elevations become uncorrelated and Ch(r) is given by 

CA(r)^ 2a2 (r»£//; (6) 

where <ris the surface roughness and 2 er2 is referred to as the perpendicular correlation length, 
£z. Figure 1 shows the double logarithmic plot of Ch(r) versus r for a self-affine fractal model. 
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Figure 1. Crfr) for a self-affine fractal model. 

MEASURING THE SCALING PARAMETERS 

Figures 2a and b show the evolving surface geometry of a cellular automaton model with 
<jc = 9. Figure 3 shows the height correlation function corresponding to the surface after 107 

iterations. Although the height correlation function has the functional form of a self-affine 
fractal model, estimates of £// and H depend on the range of data used to fit the linear region. 
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Figure 2a. Evolution of cellular automaton model at 10 iterations(crc = 9). 
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Figure 2b. Evolution of cellular automaton model at 3*108 iterations (oc = 9). 

Figure 3. Ch(r) for ac = 9 after 107 iterations. 



A new systematic procedure has been developed that measures the scaling parameters by 
fitting linear and polynomial splines to the data and estimating the values of <y/ and H using the 
data that minimizes the residuals in the fit. The linear range is determined by fitting a straight 
line,//, to the first k points and fitting a polynomial,^, to points k through m. k is the index of 
the data point at which the linear and curved segments meet. It is the variable knot (index) of a 
linear/curved spline and is a nonlinear parameter determined by exhaustion, m is the index of the 
data point at which Ch(r) approaches a constant (£j. The value of m is not critical, but should be 
an estimate of <yy for computational efficiency. The coefficients of the polynomials are evaluated 
with continuity enforced at k, and the residuals (%) are computed over the entire range. The 
value of k for which the residuals are a minimum is selected as the index for the last point of the 
linear range, k is computed using a quadratic, cubic, and quartic for/2. C1 and C2 continuity are 
enforced for the quartic fit. C2 continuity is not enforced for the cubic fit to allow some 
overshoot in the data. The largest of the three values of k is used to ensure the maximum number 
of points in the linear region is selected to determine H. If k is less than 3, it is assumed that no 
linear region exists and that the system does not adhere to fractal theory.   £// is then determined 
from the intersection of the linear fit and ^±. The points used to compute %± are at large r where 
no correlation is observed. The procedure for the quartic fit is outlined below: 

fl(x) = a + b(x-k) (7) 

f2(x) = c + d(x-k) + e(x-k)2+f(x-kf +g(x-k)4 (8) 

For C2 continuity at knot k 

/,(*) = /2(*); /i'(*) = fi(k); /,"(*) = /2"(*) 

and the residuals (eO become 

£i=a + bpi-yi    fori<ik 

£,. = a + bpt +fqi+gri- y.    for i > ik 

where 

Pi =. *,. - k; q. = (x; - kf; 1;. = (*,. - k)4 (9) 



Minimizing the sum of the squares of the residuals S 

«=£«? =2>,2=t«?+£«? -S«?+S*,2 do) 
'=° " i'=0 i=it+1 t Ä 

M=0=>«LP'+b'I<P? + fyLPi<li+8?tPiri=
yZpiyi (12) 

W « « Ä R LR 

^- = 0=^a^ri+b^Piri+f^qiri+g^rl
2=^riyi (13) 

°S R R R R R 

T7 = 0=>a2äql+b'2iplq,+fy£qi + g%qtrl=
,£qlyl (14) 

UJ R R R R R 

The systems of equations (11) through (14) are solved for coefficients a,b,f, and g for k 
ranging from 2 to TO-1. The data point corresponding to the value of it for which residuals are a 
minimum is used as the last point in the linear fit. £/ is then determined from the intersection of 
the linear fit and t;±. In this investigation, k was also computed using a cubic (g = 0) and 
quadratic (f= g = 0) for/2. The largest value of k evaluated using the three different polynomials 
for/2 is used in computing H. The following system of equations is solved to determine the 
coefficients of the cubic and quartic fits for/2: 

Cubic fits: 

f2(x) = c + d(x-k) + e(x-k)2 + f(x-kf (15) 

Pi = xs - k; qt = (x, - kf; r{ = (xt - kf (16) 

-z- = 0=*a*m + b^pi+eJjqi+fYri = y£yi (17) 
OU LR R R LR 

— = 0 => a^P, +bj4pf+ejjpiqi + /£ M. =J^p,y, (18) 
°° LR LR R R LR 



— = 0=^a^qi+b^ Piq{ + e^qf + f^q.r. = J^q.y. (19) 
Oß R R R R R 

^ = 0=>a'£ri+b2Jpiri+e'Zqlrt+fJdr?=y£riyi (20) 
VJ R R R R R 

Quadratic fits: 

f2(x) = c + d(x-k) + e(x-k)2 (21) 

/^ =*.-*;$. =(*.-*)2 (22) 

— = 0=*a*m + bJjPi+eJjqi=
y£yi (23) 

VQ LR R LR 

— = 0=>ay£pi+b^p?+ey£piqi=JjPiyi (24) 
VV LR LR R LR 

— = 0=>a^qi+by£d PM + e£ qf = X <?. ^ (25) 
«^ fi R R R 

Figure 3 shows the intermediate results with 4 points (k = 4) in the linear region. The 
final value of k was 15 using a cubic for/2 which resulted in the scaling parameters of H = 0.19, 
and £// = 8.08 for & = 8.76. 

DYNAMIC SCALING HYPOTHESIS 

Surface structure in deposition processes is time dependent (ref 7), and a measure of 
evolving morphology can be obtained by applying a generalization of equation (4) as 

Ch(r,f) = ( [h(r0 +r,tQ+t)-h(r0,t0)j) (26) 

At small t, due to the absence of a characteristic time scale (ref 7), £,// and £x are proportional to 
powers of time t and 

&,(t) oc tl/S fort <v (27) 

%i(t) * f far t < T (28) 



£ is a conventional exponent for finite size effects, and in general, because of anisotropy 
in the surface, l/£> B. T is the time at which £/7 is equal to the size of the sample. In this 
investigation, t corresponds to the number of particles added to the system, n. 

MPI IMPLEMENTATION 

The generalized height correlation function, Ch(r,t), provides useful information about the 
dynamics of growth processes, but is numerically expensive. Therefore, a suite of homogenous 
parallel procedures has been developed to map the solution to a multicomputer platform using an 
implementation of the Message Passing Interface (MPI) called LAM (ref 9) for interprocess 
communication. LAM is a full implementation of the MPI standard, supports heterogeneous 
computer networks, and provides direct communication between application processes. It is a 
node-oriented computing environment that uses a unique identifier assigned to each node as the 
primary synchronization mechanism. The nodes are usually fully connected (maximum 1-hop 
distance) since the network is generally a shared resource. In our implementation, a master 
process assigns equal-sized regions of the lattice to slave processing nodes for computation of 
partial Ch(r,t) data. The processing nodes return the results to the master process where Ch(r,t) is 
updated and the slave processes assigned new regions to analyze. Although this approach does 
not exploit the communications advantages of a fully connected network, the load balancing 
results in a performance improvement directly proportional to the number of workstations. This 
is likely due to the high computation/communication ratio and the relatively small number of 
workstations making up the multicomputer. 

RESULTS 

The dynamics of the evolving surface morphology of the cellular automata models with 
cc = 9, 10,11,13, and 15 on a 256x256 lattice were characterized in terms of the spatial scaling 
parameters, H, £//, and t;±.  The height correlation function was computed at discrete intervals 
(iterations), and the largest value of k resulting in the minimum residuals using three different 
polynomials for/2 was computed. The spatial scaling measures were determined for those 
surfaces for which fractal theory applied (* >2). These values were used to determine the 
dynamic scaling exponents i/£and B. Table 1 shows the measured values ofH, &,, and £i for 
<JC = 9 at each interval and the degree of the polynomial f2 that resulted in the largest value of k. 
The table shows that H remains relatively constant as the surface evolves. Results are similar for 
all other ac. In all cases studied, a quartic fit for/2 resulted in the largest linear region only once. 



Table 1. Spatial Scaling Parameters with cc = 9 

N*10b k h H fy Si 
1 3 3 0.16 3.13 5.42 
3 7 2 0.17 5.37 6.75 
5 12 3 0.17 6.69 7.46 
7 13 3 0.18 7.32 8.08 

10 15 3 0.19 8.08 8.76 
30 19 3 0.21 11.59 10.80 
50 33 3 0.22 13.20 12.06 
70 26 2 0.22 13.87 12.43 

100 37 3 0.22 15.33 12.81 
300 35 2 0.23 24.78 16.61 

The evolving surface morphologies of the cellular automata models adhere well to the 
dynamic scaling hypothesis as shown in Figure 4. The figure shows typical In-ln plots of spatial 
scaling parameters from which the dynamic scaling exponents are derived. The exponents 
l/£ and B are determined from the slope of the straight-line fit using all of the data points. The 
results for this and the other models are summarized in Table 2. The data show that the value of 
H increases with increasing ac and at any given point in time, the parallel correlation length 
decreases with increasing ac. This result is expected because as cc increases, more particles are 
required for an avalanche to occur. There is no evident correlation between B and ac. 
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Figure 4. Parallel correlation of length versus time. 
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Figure 5. Perpendicular correlation of length versus time. 

Table 2. Dynamic Scaling Parameters 

Oc (H) VS B 
9 0.20 ±0.03 0.33 0.19 

10 0.25 ±0.04 0.29 0.23 
11 0.30 ±0.03 0.27 0.23 
13 0.36 ±0.03 0.25 0.24 
15 0.41 ±0.01 0.21 0.20 

SUMMARY 

The deposition of adherent, erosion and corrosion-resistant coatings is critical to the 
performance of many systems. In order to develop optimal coatings, it is important to 
understand the effects of changing the parameters controlling the deposition/sputtering 
processes. Models of the deposition processes and quantitative measures of the condition of the 
substrate surface and evolving coating are, at present, extremely limited. In this study, cellular 
automata simulations were used to investigate the nature of the vapor deposition process by 
exploring the natural evolution of dynamical dissipative systems through self-organized critical 
system analysis and spatial scaling measures. A new numerical technique was developed to 
analyze the intrinsic structure of evolving surface morphology in an effort to better understand 
the dynamics of the growth processes. The algorithm is numerically expensive, therefore the 
computational problem has been mapped to a multicomputer platform using an implementation 
of MPI call LAM for interprocess communication. Using this approach, the deposition models 
were shown to agree well with the dynamic scaling theory. The technique is also being used to 
validate the integrity of other deposition models through a comparative analysis with 
experimental data, and to determine if a correlation exists between intrinsic surface structure, 
evolving surface morphology, and parameters controlling the deposition process. 
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